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FOREWORD

This report describes an investigation conducted by the Hughes
Aircraft Company, Radar Systems Group, El Segundo, California, to test
the use of the geometric moments of an image and of the rotationally invari-
ant functions of these moments for the automatic recognition of aircraft
targets from radar images. The effort consisted of radar image generation
from real data and analysis and computer studies of statistical pattern recog-
nition techniques for the automatic recognition of targets using the geometric
moments of radar images.

The investigation was performed by the Signal Exploitation Programs
Office of Hughes' Radar Systems Group, for the Office of Naval Research,
Arlington, Virginia, under Contract NO0014-79-C-00643.

Dr. George A. loannidis served as the Hughes program manager.
Commander Stacy Holmes followed by Commander Roger Nichols were the
program managers for the Office of Naval Research, Arlington, Virginia.

The analytical tasks for this study were carried out by the program
manager with help from Jon P. Belleville, who also contributed to the devel-
opment of the software and wrote Appendix A.

The major contributor to the development of the software for this
study was Charles P. Dolan who also wrote Appendix B.

This final report is submitted in accordance with the data require- =
ments of Exhibit A, dated 20 August 1979, Sequence ABY2 of the contract j
D aita Requirements List 1423, !

The author acknowledges the support and contributions of

Messrs, James Crosby, Manager, and Calvin Boerman, Assistant Manager

of Signal Exploitation Programs at Hughes. The author also thanks

Dr. Chung-Ching Chen who provided the images of the F-111.
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SECTION I
INTRODUCTION AND SUMMARY

In the past, most radar target recognition techniques have
concentrated on the use of one-dimensional target signatures. However, the
development of the Synthetic Aperture Radar (SAR) and the recent develop-
ment of the Inverse Synthetic Aperture (ISAR) technologies have made it pos-
sible to obtain radar images of targets and thus allow the use of two-
dimensional pattern classification schemes for automatic radar target recog-
nition. One such two-dimensional shape recognition scheme is a technique
known as the method of moments, which has been successfully applied to the
recognition of objects imaged in the visible and infrared spectrum. Recently
under an Office of Naval Research (ONR) sponsored investigation Gonzalez
and Moret [8] applied the method of moments to the classification of simu-
lated radar images. Their results showed that very good classification per-
tormance could be obtained using this technique,

In this investigation sponsored by ONR the Hughes Aircraft Company
studied the application of the geometric moments of an image and rotationally
invariant functions of these moments to the automatic recognition of aircraft
targcts from their radar images. The images used in this investigation were
Zenerated by the application of the ISAR technique to turntable radar data and
also data obtained from flying aircratt targets. ,The turntable data had been
obtained at the RATSCAT facility under the ATAL E-3A Non-Cooperative
2ata Collection program and consist of X-band measurements against
1, 5 scale models of an F-102, an F-5E, an A-10. an F-15anda YF-lo.

Fhe data were collected using the stepped frequency technique using a total

of 250 3.4 MHz frequency steps to synthesize an 870.4 MHz bandwidth. TIor
the tull scale targets these measurements correspond to S-band data it

23 Nliz bandwidth., The targets were placed on a rotary platform which
rozited it U, 2 deuree increments between adjacent bursts of the 230 frequency
stens. o addition to the RATSCAT data. measurements for a maneuvering
F-lil atrceraft and a DC-10 during take off were also used. The data on the
ot osvere obtained asing the ALCOR radar which ases a lincar F-M nulse

“outh fuo NI bandwidth, The data on the DC-10 wvere obtained by an S-bhand

v«-. .v-.T____A‘
DV "N S,

- .
POET-SI P ST SRS I 1 DAL




radar operated by the Naval Ocean Systems Center (NOSC) in San Dicgo. By

stepping the transmitter frequency pulse to pulse at 1.08 MHz increments over

a total of 250 pulses this radar has an effective bandwidth of 276 Ml{z., The
images of the F-11] were available from the work of Chen and Andrews [14].
Images for all these aircraft targets were generated using the techniques
described in Section 2.

Using the above data a set of 540 images was formed from the
RATSCAT data base (108 images per target for an F-102, an F-13, an
YF-lo, an F-5E, and an A-10). The first 72 images for each target were
obtained using the lower 128 frequencies covering a bandwidth of 128 MHz
out of a total of 250 MHz measurement bandwidth. The last 3t images out
of the total of 108 images per target were obtained using the upper 128 fre-
quencies. The resulting range resolution was 1. 17 meters. The images
were formed for a 3-degree rotation of the target which results in a cross
range resolution of 0. 95 meters. The images were formed over the following
set of aspect angles 0-3 degrees, 3-8 degrees, ..., 175-178 degrees and
2-5 degrees, 7-10 degrees, 12-15 degrees, . .., 177-180 degrees for the
first set of 128 frequencies and for aspects 0-3 degrees, 3-8 degrees, . . .,
175-178 degrees for the second set of 128 frequencies.

The images of the F-111 obtained using the ALCOR radar ranged
over the following aspect angles: 0-3 degrees, 53-8 degrees, ...,

83-87 degrees and 2-5 degrees, 7-10 degrees, . .., 87-90 degrees.  All of
the above Images corresponded to top views of the targets, i.e.. projections
on the horizoatal plane. From the NOSC data set a small number of images,
10 top views, and 10 side views were obtained for a DC-10. However,
because the target in this case was moving it was necessary to use the tull
230 Mz measurement bandwidth to properly focus and alinn the range signa-
tures used in forming the tmage.  For classification tests only the ten side
views obtained on this target were used. These images were combined with
A set otf ten side view images obtained using RATSCAT measzurements for the
Pl and A-10, In addition to the above classification tests the classiuitiors
woere also presented with top view images of the RATSCAT tarcets obtained
asing the tall 250 Mz bandwidth and 1 o, 2 degree rotation ot the taroet.

Forthese tests 24 imaces per target for the five RATSCAT ra Fucts wWee

e m————h
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formed over the following set of aspects; 0.8-7 degrees, 3.8-10 degrees,
6.8-13 degrees, ..., 33.8-40 degrees and 140.8-147 degrees, 143.8-
150 degrees, ..., 173.8-1380 degrees. The images used in this study are
given in Table 1.

In addition to the generation of the above images, software was
developed for image processing such as backuround noise computation, adap-
tive threshold adjustment, edge enhancement and edge detection. Software

was alsc developed for the comuvutation of all central moments of orders twou

to seven and of all orthogounal moment invariant functions using moements of
orders two tu seven. As described in Section [lI, the total number of required
mwoments ts 33 and is also equal to the total number of invariants. Also three

general algebraic invariants were computed as described in Section 111

TABLE 1. RADAR IMAGES OF AIRCRAFT TARGETS
GENERATED FOR THIS STUDY

! 1 Frequency"\
Data ! View Aspects ! Steps
. e
1 ‘
RATSCAT . Plan ‘ 0-37, 3-87, ., 175-178° ‘ 0to 128 |
RATSCAT Plan i 2-500 7-10°%, L 17T-1807 | 0 o 128
' ! i
RATSCAT Plan ! 0-3%, 3-8", ..., 175-178" C124 to 250
RATSCAT Plan | 0.8-7°, 3.8-10", o.38-13" U to 230
i 33, 8-400
!
RATSCAT Plan D140, %-147Y, 143.8-150Y0 0 00, 0o 230
‘1 173.3-130Y
A-10, F-3¢ Profiles | ~18.2% to 127, -15.27 to =" 0 to 250
i L, 12% to 1., 20
ALLCOR ' F-111)  Plan F0-3Y, 2230, 53T, L st 2 m
I resolution +
|
NOSCaDRDC-1W) Protiles | 10 nuse aspects VIR CTRRAL
LORC o DC -1 " Plan “ 10 broadside aspoects “ Dot 2 F
n |
RATSCATD [arcets: F-102, £-30, F-13, YF-1o, A-10. | .
!
m = a— e e e o St Kk e e i e
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Moments and invariants were computed from both the umage and the cdpe "

detected image (contour image) and classification tests were performed using ;

feature vectors constructed from the moments and feature vectors constructed

from the invariants. In addition to feature vectors computed from the geometric

moments and tnvariants features obtained by collapsing the image intensities

along two orthogonal axes (parallel and normal to the fuselape orientation) as

described in Section IV were tested. 3
As seen in the results from the classification tests presented n

Sections VI and VII the best performance (84 to 97 percent correct) was

observed for feature vectors using the central moments of the image and

also for combinations of moments trom the image and the edge detected

image. The results are encouraging and suggest that the geometric moments

may prove to be important teatures for the application of statistical pattern "
recognition techniques to the identification of aircraft targets from radar i

images. However, because a limited set of imaging geometries (only plan
views corresponding to projections on the horizontal plane for zero roll and
profiles corresponding to projections on the vertical plane) was used in this
study the performance of the techaiques as a function of roll and pitch angles
was not investigated., Further more it was assumed that the imaging plane
was known. The determination of the tarpget view presented by the image 1s

an imvortant problem that will be addressed in follow-on work in this area.

BV N

In addition to the above classufication results obtained during this
study a technique was also developed which uses invariant moment functions

for the computation ol the cross range scale in ISAR hmages of targets whose

rotation rate is not known a priori.
Section Il contains a discussion of the ISAR imagine and mage processing

aleorithms used tn this study, Section I s a discussion of the geometr:c

i
i
|
|
!

nmuoanents and avardant tunctions of these moments and thetr use m the combuta-
r:on ol the tarcet aspect and the combutation of the cross range scale factor ot
ISAR 'mmaves. A recozsnition schoeme based on tmace collansing along tawoe
rtcoonal ases is discussed o Section IV oand Section Vo ocontaims a descrintion
fothe dlassitiers used nothis mvestizateon as well as teo tecnniques used tor

reducing the ditiens: aalite of the teature vectors,  he clas<itication resualts

are contaened n Section VD oand the conclusions are 2oven on Section VL betoal»

. i R M D s AR D




i

} g
B

& on the computation of the invariant functions and a brief discussion of the e
software used in this study are found in Appendices A and B, respectively. A
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Section I
INVERSE SAR IMAGING BY FREQUENCY STEPPING

The most common radar imaging technique today is the SAR method
used primarily for ground mapping bv airborne radars. The method
emplovs high range resolution waveforms and takes advantage of the linear
translational motion of the airborne antenna to generate a synthetic long
array with an effective azimuth beamwidth several times smaller than the
beamwidth of the radar antenna. Thus radar images of the ground and of
vround targets are generated.

When the radar target is moving (thus causing a change in target
aspect) a similar technique called ISAR can be used to image targets in
motion. The method takes advantage of the relative doppler shift of the siy-
nals returned from the various scatters on the target (as a result of the tar-
get's rotational motion) to obtain the scatterers cross range locations. Either
a single wideband pulse waveform or a burst of N narrow band pulses stepped
in frequency pulse to pulse over a large bandwidth can be used to obtain the
range profile of the target. For the stepped frequency waveform, a synthetic
high resolution range profile is obtained by Fourier transforming the target
¢choes per frequency burst. The time history of the range profiles for a tar-
vet with a changing aspect contains doppler frequencies that are directly
related to the target scatterers cross range locations. Thus the cross range
dimension at each range cell of a rotating target is obtained by Fourier trans-
‘orming the echo history of the range cell. In this way, range and cross

rance data are mapped into a target image.

.1 RANGE-DCOPPLER IMAGING OF TARGETS CN A ROTARY PLATEFCRM

Radar imauving of tarcets on a votary platform with a steppec
ceocunency radar system is brietly described here. [he processing aluo-
Fitiams for the formation f o radar image ot the taraet are derived by reproe-

|

riee the tarcet by a collection of many point scalterers as descrited hy

Setiieidia




Chen and Andrews (1), Walker (2) and Wehner (3). Even though the analysis
presented here follows this point scatterer model, the resulting imaging
algorithms are also valid for targets that consist of one large continuous
surface with dimensions much larger than the radar wavelength, as it follows
from the work of R.M. Lewis (4) who by the use of physical optics formulas,
found the same imaging algorithms as those obtained by the point scatterer
model.

For the geometry of Figure 1, assume that the target consists of
a large number of point scatterers. After coherent demodulation the received
radar echo as a function of transmitter frequency f (wave number k = 27f/¢)
and target aspect angle 6 is given by

E A jRk+R_ - -

where p(_r.; 6) is the complex target reflectivity at point _r- on the target sur-
face when the aspect angle is 6, k is a vector pointing from the radar
towards the center of the target and its magnitude is equal to the radar wave
number given by

T 2T 2rf
”k” :\— = : ’ (

[€%]

E, is the amplitude of the transmitted pulse, Al is the effective antenn= |

aperture of the radar, RO is the tarvet range, and the surface inteural is

—

over the illuminated target surface Sl' Expressing the vectors k and r of

Equat: »n {1) 1n terms of the body coordinates X, Y (sce Figure 1)

l—lz-r:xp - uvp

X BN




where:

{4rf/c) cos 8, P, = {(4rf/c) sin 6

o
A
1"

= rcosa andy = r sina

Substituting from Equation (3) into (1),

E A j;--fi Cr Axp_ +vyp)

Ulp, p) =(——"5]e "/ /p(x.y:e)e x Y
X' Ty > % ARZ i
NT o) S

dxdy (4)

1

which shows that the measured signal is a sample of the two dimensional
Fourier transform of the target's reflectivity projected onto the horizontal

plane and modulated by the linear phase term

jp - R
e

When in the measurement setup of Figure 1 pulse-to-pulse trequency

stepping is used over a bandwidth ({ - f . ), the resulting measurements
max min :

correspond to samples of U (p‘(, py) over a region D in (px, pv) space which

is a section of a ring between two circles with radii Py and p, as shown in

Nl e

Ficure 2. The corresponding measurement transfer tunction 1s
[I(px, py) =1, P, = P cos g , py = p sineg (5a)

PlcPs P, -‘%Qs < tﬁ L Hip, p) = 0, otherwise, (5b) :4

When A0 1s s=mall and ‘pl - pl) e 1/2 (p_, - pI), the Fourier transform of B

this measurement transfer function is ziven by

p L. - 3 P )
e (\p). Sin 1 BvAB/2)  sin (xAp/2)
dexe s |\ ) A SRl Txap/ )
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Figure 1. Imaging of target on a turntable.
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Figure 2. Mapping of measurement region in wave number space,
for measurement set up of Figure 1
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where X is the range axis and Y is the cross range axis, p =

P, "' Py
2
and &p = P, - Py- Therefore, the reconstructed reflectivity f(x, y) and

the actual reflectivity profile p(x, y) are related by the convolution

integral
p(x, y) =j[dX’ dy" h(x - x%, y-y)p(x, y . (7)
From Equations (b) and (7), the resulting range resolution is '
2w 2 C
AX = === = (8)
2 -
ap ﬂ(f -f ) - (fmax min)
¢ max min
while the cross range resolution is given by i ]
2 A
A [~ LIS Q9
Y P66 2a8 (%)
where \ is the mean radar wavelength given by
2
\ = - ic_
max min
From Equations (4) and (5a, b), the reconstructed reflectivity
profile, which is the radar target image, is given by
. A8 P,
) - A L - . L
Bix, ¥) = K_ / - de/ pdp U (p, §) elXP €08 Jvpsin®
A8 .
"2 P
wihere Ko is a constant that depends on range, effective antenna aperture,
wavelencth, and transmitter power., For small values of A8, the above
intezral can be approximated by
a5 o
prx, vi o= K, / 48 / pdp U (p, 8) e AP C_Ip@y . (11) r
T h




For numerical computations,

Py * (N-1) &ap

p=p tkdp , p, =
6=i60 -28 | Ae- (M-1)68
x = nAx , v = mAay 3
¥
and choose Ax, Ay so that
- 2rm _ 2m
Ap Ax = S’ p1 604y = M
i’
Using the above, '
; pynax
P T e_](._v/.\l)l\n
(> o N
5p8y = i(2m/M)im jan/M)(ap/p))imk JplyAG/;_
e e’ e e
-1 ; 2
= j(2n/M)im 27 [Ap). jpyyae/a
e” 1 +J——-(~—)1mk e
M Py
Substituting from above in Equation (11) and replacing the integrals by
summations, the magnitude of p(x, v) is given by
o2 o | No1 M1 '
> (2 ¢ S22/ M
Alnax, may) = Ko—2— LIN N Uik, D) e_](g_w/N)l\n e)(._Tr/\ihm
k=0 1=0
N-1 M-l ‘
2n j(27/Nokn  {(2w/Miim | v
’j—\f(%a)m N UK, ) eJ(Z.,/NHn ST/ Mmoo
A — — i
1 x=0  i=0 |
12 .
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In most radar image applications, only the first summation is used. The .

second summation which is multiplied by the very small factor

érm (Ap
M Py
where m is the cross range dimension index(y = m Av) is a small correc-

tion term that accounts for the error introducec by the approximations used
in the polar to rectangular conversion and is usually neglected. The above
polar-to-rectangular conversion also imposes a restriction on the maximum
size of the angular sector Af in the measurement space that can be
processed coherently to form a radar image. For large values of A8, the
polar-to-rectangular conversion introduces an error caused by scatterer
motion through resolution cells. This problem imposes the following

resolution limitations [ 5] when Equation (12) is used

\L 1/2
ACR > | — (13)
4
AD
ACR * AR > =/ (14)
where:
ACR = cross ranve resolution
‘ AR = range resolution
L. = tarvet length in range
D - tarvet width in cross ranve, and 'q
\ = radar wavelenuth, J
This limitation can be avoided by polar format processing usine Equa- .
tion (1U) at the exnense of a computationally nefficient aleorithm,

[he stenned {requency technique was ased to form images of five t
aircrart models. The data ased for these imaces were callected at :
DATSCAT v N-band azain=t 1 2 scale models ofan F-102, an -3, a
YE-10 0 an F-lsand an A-1o. 0 A total or 230 504 Mz frequency steps i

13




e

were used. The targets were placed on a rotary platform that rotated at

0.2 degree increments., To avoid range aliasing the frequency step size
must be less than (c¢/4L) where L is the target length. To avoid cross

range aliasing the angular increment must be less than (A/4D), where \ is
the radar wavelength and D is the cross range target dimension. In the RAT-
SCAT measurements the frequency step was adequate to avoid range aliasing,
but the 0.2 degree angular increment was somewhat high for aspect angles
near the broadside of the target. By introducing a human cbserver in many
of the cases where cross range aliasing occurred for aspect angles other
than head-on-broadside, the images were corrected when the aliased part
could be resolved in the range dimension. The five scaled aircraft models
were mounted both horizontally and vertically on the rotary platform so that

both yaw and pitch angle rotation could be simulated. The measurements

obtained when the targets were horizontally mounted on the platform gave
plan (top) view umages of the targets; examples are shown in Figures 3

through 8. The vertical mounting resulted in profile (side) view imaues as

shown in Figures 9 and 10. For most of the classification tests described
below, the top view images of the targets were used. One test, however,
was performed with profiles of the F-ZE, the A-10 and of a DC-10 during
take off: stepped frequency measurements provided by the Naval Ocean
Svstems Center (NOSC) in San Diego wuvre used. The technique used to

image that target is described below.

2.2 RANGE-DOPPLER IMAGING OF MOVING TARGETS

When the target is moving. in addition to the change in target aspect,

the range between the radar and the target is also changinu. As a result of

such range changes during formation of the radar image the images appear
to He out of tocus. The signal processing technique used to correct for this
defocusing etffect s known as anttotocusing if it relies onlyv on the received

radar sivnal to accomplish this task. Although the autvfocusing provlem for

e

the stepoved frequency waveforms, in princiole. is similar to the autofoc =iy
oroablem for the single widenand pulse wavetorm, in the stonoed {reguency

casc a ¢orrection must also be introduced to account for phasce errors

14
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caused by the changing target range during transmission of a single N
frequency pulse burst.

As shown in Figure 11 when the imaging radar employs pulse-to-
pulse frequency stepping to synthesize a high range resolution target
profile, the received target echo at each frequency can be considered as a
frequency sample of the Fourier transform F(fk, Bi) of the target's ranpe
response multiplied by quadratic and linear phase error terms introduced
by the target range RO and target radial velocity R. As seen in Figure 11,
the received signal as a function of frequency fk and aspect anule ei is given

by

. _ . ) . 4T . . .
U(fk. Si) = F(tk. 9.1) exp |-j 1 R0 exp| -] N {TR)
o 0
exp |2 (R 2L RaTic|exp | -1 (2L R Tk
X ot Ty \f
o ) o\'o
4m (A . 2 -
exp -j—r(f—f)(RaT)k , (13)
Mo Vo

where RO is the tarpet range at aspect 60 when {requency fo is transmitted,
\ , is the mean radar wavelength, Af is the frequency step size, AT is

o

the pulse repetition interval ( PRI) between transmissions at adjacent {re-
quencies, and T = N - AT is the burst time. The effect of the lincar phase
errors introduced by the first three complex exponentials in Equation (15)
is a translation of the resulting radar imace in the imave plane and does not
arfect the imace qualitv. But the last two complex exponential terms in
Equation (13) are quadratic functions of the mdices 1 and x and have a
defocasing and blurring effect un the resultine radar imave.  Autofocusing
aliorithms attempt to correct the cffect of these two quadratic phase error
termis,  [he autolocusing aleorithms usea n Ficure [2 to correct tor the
cooviratie phase error involving the prodacr vk ds known as range Jiun-
ment wvhile the correction for the quadratic error involving = in qua-

toom A (s caown as guadratic pnase coannensation and (s needed berore

1~

e pretnrns L a o s:iazcieo hurst can he Fourier traasiormeda to obtain the

.
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Figure 11. ISAR imaging of target by radar using pulse to pulse frequency stepping.
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range resolution profile. A signal processing block for correction of phase
errors introduced by Fresnel region terms is also shown in Figure 12.
This correction accounts for a quadratic phase error introduced by the
assumption that the radar signals are plane waves rather than spherical
waves and is only important at relatively short ranges.

When autofocusing is used for range alignment, it is usually assumed
that the target's rotational m'otion is relatively slow in comparison to the
N-pulse burst time, so that two adjacent range signatures are approximately
equal. With this assumption, the problem of range alignment can be
expressed as an optimization problem, where an unknown linear phase func-

tion of the form exp [ -j (Zﬂ'fkdi T ¢;i)] is sought so that the function

Z,

-1

?
-j d, + P -
. _)(21'rfk i éi);

Utf,, ) - Ulf, 0, ) | (lo)

R

is minimized.

Then the resulting value of di is an estimate of the (range displace-
ment) time delay between the two range profiles at aspect angles Gi and Bhl,
and é.l is a phase difference between the two profiles. In general depending
on the snectral characteristics of the signal, filters Hl(f) and Hz(f) arc intro-

duced and the resulting criterion function becomes

N-1
J = N :H (£,YU(f,, 6,y -H,(f)U (f, 6 ) exp (-j2=f d -j¢>);z
-~ 1 'k k> i 2k k' i+l ki i
k=0
(17)
Mimimizati.n 1 Equation (17) with respect to d. and ¢ wvives that the
ISR SR RRREEN valieer o6 fne flulay d, 15 the value that maximices
[ N1 . 2
i2=f, d.
Q = N W)Y Ut , 8,0 Usit,, 8, e rol . {(1=)
L e k b 1 i i-1
=0

<y




where:
W(£) = H(£) Hylf) (19)

is a frequency weighting that depends on the spectral characteristics of the
signal and interference. For example when W(fk) = 1.0 then using Parseval's
theorem, it can be easily shown that the maximum value of Q is equal to the
square of the maximum cross correlation peak between the two range profiles.

Once estimates for the delays di's and phase angles ¢_1's are obtained,
then assuming that the range rate R is approximately constant during a burst
period a quadratic phase compensation can be introduced to account for range
changes during one range signature time,

The above processing technique was used to generate inverse SAR
images of a DC-10 during take off. The data were obtained by an S-band
radar operated by NOSC in San Diego, CA. By stepping the transmitted
frequency pulse to pulse at | MHz increments over a total bandwidth of
256 MHz, this radar obtains a synthetic high range resolution profile every
0.05 second. A total of 64 range profiles are used to form an image.

Depending on the apparent target rotation {yaw or pitch) plan {top) or pro-

file (side) view images of the target are obtained., Figure 13 is an exaniple
of the plan (top} and of the side view images for the above DC-10 generated
using the processing described in Figure 12, Ten side view images of this
target, 10 side view images of an F-3E and 10 images of an A-10,

were used for classification tests using the method of moments, The

results are presented in Section VI.

2.3 IMAGE PREPROCESSING FOR AUTOMATIC TARGET RECOGNITION

Before the radar images generated by the coherent processing utf the "
radar returns as described in Figure 12 are presented to the classifier, J
an idaptive thresholding scheme (s used to remove noise in the images. f’
Furthermore. the edge detection scheme of Tieure 14 15 used to gencrate :
image boundaries., As seen in that figure the background noi-e level o1 the

mage s computed, and a threshold corre-nonding to 4.4 dB above e

o B meati e
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Figure 14. Processing for edge detection.

background noise level is used. Then the resulting image is used to obtain
the image edges as shown in Figure 14. As seen the dynamic range

the thresholded image intensity is reduced using the transformation

Aij = log (Fij+1) where Fi' is the original image intensity, The resulting
image intensity field A,. is then convolved with an edge detection mask M
to gencrate the field E. i = M3 A .. The field E. i is thresholded using an
adaptive threshold set at 6 dB above the estimated background noise level
in Pli_. The computation of the background noise levels used in computing
the adaptive thresholds is obtained by averaging all intensities in the
observed image fields that are less than one fifth the maximum observed
intensity. Examples of radar images before thresholding, after thresholding

and after edge detection are shown in Figures 15 through 18. H

All the aircraft targets used in this study are shown in Figure 19. f g
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b. After thresholding
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a. F-102 (LENGTH = 20.8M, WING SPAN = 11.6M)

Figure 19. Target aircratt (Sheet 1 ot 4)
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b. Northrop F-5E (iength = 14.73 meters, wing span = 8.128 meters)

c. General dynamics F-16A (length = 14.17 meters, wing span = 10 meters)

Figure 19. Target aircraft (Sheet 2 of 4)
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d. McDonnell Douglas F-15 (length = 19.4 meters, wing span = 13 meters)
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e. Fairchiid Republic A-10A (length = 16.2M, wing span = 17.5M)

Figure 19. Target aircraft (Sheet 3 of 4)
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g. McDonnell Douglas DC-10

Frgure 19. Target aircraft :Sheet 4 of 4)




Section III
RADAR IMAGE CLASSIFICATION USING
THE METHOD OF MOMENTS

.

One of the more difficult problems in the design of a recognition
system for pictorial patterns is the selection of a set of appropriate numeri-
cal attributes or features to be extracted from the object of interest for
classification. One set of features that has been applied successfully to the ,
recognition of optical pictures is the set of peometric moments of the image ¥

and invariant functions of these moments [6], [7], [8],. The geometric

B

moments and invariant moment functions and their use in classifying radar

images of targets are detailed in this section. 1
R

3.1 CEOMETRIC MOMENTS AND INVARIANT MOMENT FUNCTIONS OF G
INMAGES

The non central (p + q)th order moments of an NxM rectangular image

field f(’xi, yj) are defined by

NOM
2:2: . P.a
Tpq T N+ M M Bx Y (20) *

1= 1

where % y}.i are the coordinates of the (i, j) cell and fix., v.) is the intensity
i Y \
furction.
The central moments for the same rectangular image field are

defined b

- :____ £ ik, -TP L L4 >
np — Z Z Xy | '~ <) '\_l ) (21)

i=1 izl

oot




where-
n
3 -0 (22)
o0
and
n
72t . (23)
n
00

The normalized central moments are defined by

m
. _P9

Pd  myqy

and are invariant with respect to changes in the image intensity. Central
moments as used in this discussion are the normalized central moments
detined above.

From Equation (21), the central moments are seen to be invariant
under translation but vary under rotations of the image. Using the theory of
aluebraic invariants Hu[ 7] has shown that alpebraic relations exist among
the central moments of an image that are invariant under translation and
rotation ‘see also Appendix A},

These invariant moment functions are of the form

i
B P |
p v m A ) ‘
»,C b} .

P19 P29, Pan |
}

and are invariant under co-ordinate transformations. In particular a set of
t
invariants known as orthovonal invariants are functions whose value does ]

. s e ———————
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ot chanye under a rotation of co-ordinates, i.e., theyv are invariant with

respect to the orthoronal transformation

X cosf sineé X ‘

4

= (24) .

Y -sin® cos6 . J

for anv angle 8, i e., N
plm . n’." R . = pim y e .. IM )
P19 Pot, L PY Py Prfn

where the mpiqi are computed using the imaege intensity field fix, v) and the
m;)iqi are computed from fix', v'). When these tfunctions are invariant under .
rotations and/or retlections about one of the courdinate axes they arce called
absolute orthogonal invariants. In what follows, by 'invariants' we refer to
these absolute orthogonal invariants.

Using the theory of algebraic invariants, Hu (7] has shown that the

number of invariants involving moments from second to nth order tn - p - q)

are the same as the number of moments with orders 2 to v which 15

_in+4)yin- 1 1

N " ,

In uptical and infrared tmage recognition syvstems only invariant fmnctions
oontained from the second and third order moments are usually used, For C 3

these moments, there are six absolute orthogvonal invariants cviven by

o cuoa - (23) '
0 Han Moz r -
i
N 2 2 .
o Liag = o2 . foe)
f}
- 2 \ 2 -
A T R A B S e '




b , 2 2
Py = r6[“‘30 TRl Tyt R ] (28)

S , 2 2
Pa™ 12 (ka3 g g by iy g oby ) -3 Muy =150}

(29)
(315 1 B3 g 1 Hitg3 43 (g o iy 5 ) = (i #1102 12} ]
21 Ho3 21 THo3 1P I3 g TH )~y Ty
=L Y- o2
P =73 [ag-rop kg g =by ) - () =10}
(30)
T Aup (3o M) iy FRgs )]
and one skew™ orthogonal invariant given by
. - - 2 - 2
Po = r1.2[‘3“21'“03”“30 M1 g by )" =3 My = g0
(31)
. N ; ~ 2 2
(gm0, T B e )T - (b, 750
Above Pl, PZ. e Pb have been normalized by dividing by PO = r to cancel

uniform scale changes. Because the quality of most radar images is not
good compared to optical or FLIR images, the number of moments and
invariants used in most of the classification tests of radar images described

in this report is much larger than six. In particular, all invariant functions

involving central moments up to order n = 7 (i, e,, a total of 33) were computed

using the formulas presented in Appendix A, In the classification tests, all
of the above invariants as well as smaller subsets of these invariants were
used to construct feature vectors, (Classification results from these tests

are oresented n Section VI,

Altheugh the moment functions in Equations (23) to (31) anove and
those presented in \ppendix \ are invariant under orthogonal transformations,
thev are not invariant under general algehraic transformations. In narticular
it the apparent target rotarion rate is not estimated, the ¢ ross range dimen -

sion of an inverse =\ image mav not ke properly scaled.  The result 1s a

o= ke rrhoconal invariant changes <1cn ander rotlectog,
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distorted image, which destrovs the invariance of the above moment
functions, A technique for estimating the cross range scale of inverse SAR
images using orthogonal invariant moment functions is discussed in
Section 3.2, This technique has been tested on the turntable data but has not
been proven vet on real moving target data.

To overcome this scaling problem, Hughes investigated the use of a
set of moment functions that are invariant under general linear transformations

provided that the determinant of the transformation matrix is unity, i.e

0

where: \ g
A = (ad-bc) = 1,

Such a set exists, and for the second and third order moments Hu 7 gives

the following invariant moment functions:

2 N
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These can be normalized to generate a set of general algebraic

invariants given by

My = 1
_ 3
NG 11/10 (36)
2
2 =1/ (37)
_ 3
n3 _13/10 (38)

Using the theory of algebraic invariants a much larger sc¢t of general
algebraic invariants can be derived. However in this investigation the feature
vectors that were considered consist only of the above threc invariant func-
tions as well as the squares and by two products of these invariants as des-
cribed in Section VI. In general, moments and invariants were computed from
both the intensity modulated image and from the edge detected image obtained

by the image preprocessing described in Section 2. 3.

3.2 COMPUTATION OF TARGET ASPECT AND CROSS RANGE SCALING
USING THE GEOMETRIC MOMENTS

I the rotationally invariant moment functions are uzed u= [eatures
for classification, the target orientation in the imaging plane does not have to
be computed. Howeter, if that orientation is desired so that other recog-
nition tecanlques. wnich need that information. cun also be applied. the
central moments can e used to yive the target orientation ax =hown in Fig-
ure 20, [t is shown in the f;gure that by fitting an ellipse to the aircrart

annice. the orientstion of the major axi=. which usually comcides with the

Disclave, can be sotained from (see Hu [T])
- M
tani 28 -
(e o, T Mo
ceere B - oo o thirs anls o wth v orioontal raoans -,
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Figure 20.. Computation of fuselage orientation by fitting ellipse to target image.

In this study the performance of the above formula in estimating the
target aspect angle was tested using the images of the five RATSCAT targets,
The results are presented in Figure 21 in the form of a histogram that plots
frequency of occurrence versus error in vrilentation angle estimate. A total
of 30 images per target covering aspect angles from 0 degree (nosc onj to
180 degrees (tail) were used in constructing the plot in Figure 21.

A problem that often arises in proces=zing inverse SAR (ISAR) images
iz the determination of the scale factor to be ased in converting relative

cross range doppler bin numbers inuto absolute cro<s range untt-, For the

u

ranve dimension such a scale factor is readilyv available from the radar
ranve resoluzion cell, The computation of the eguivalent range cell <ize along
e oross randge direction, however. reauires <nowledoe o the rotation rite

o the target hout its ceniroid and 1~ 2iven v
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Figure 21. Aspect angle error distribution over all aspects for five RATSCAT targets.

where N ors the rdar wavelength in meters, I is the time interval over which
the tarcet's doppler history s obscrved in forming the ISAR mmage. and ®
1~ the rotiation rate of the target.  Therefore, to use Equation (40) for the
compuatiation of the ¢ross range scale factor d. the rotation rate ® of the :
Lot e tarcet amust either be known or estimated fram the radar dota,

. . . . ]
Preaentlt the lack of a4 good method tor e-timading the rotation rate of o

cet abont it= coenter imposes oonngor propfens n the fortation o
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Sroneriy o scalea ISV images,
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If successive ISAR images of a rotating radar target are mapped on
a plane so that the x-coordinate 15 along the range direction (i, e, the radial
direction from the radar to the taryet) and the v-coordinate is along the
cross ranve direction, as shown in Figure 22, then the above invariant

moment functions can be used to compute the ratio of the ¢roxs range to range

e A i St

cell si1ze,

Denoring this ratio by r, i.e.,

O
-

r = (+1)

)
o

where DY is the cross range cell size and DN is the range cell size the
orthogonal invariant moment functions are shown to be polvnomials mn r,

For example, the invariant P, of Equation (25) can be expressed as

- - - Pl b
P ) =By mr By, (32)

CROSS RANGF
CROSS RANGE
-

RANGE X RANGE X
a. v =t h. t=1_+ 1

Fiqure 22. Two successive ISAR images rotated with respect to each other by angie
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if Hap and Boo are computed by assuming that the cross range cell size DY
is equal to the range cell size DX, Similarly from Equation (2o)
2 4, 2 2 2 2 2
= r + < r + 2 - r t .
PLIFY = Mo iy (*‘11 K20 “oz) TR (43) :
»
If the above normalized central moments from two suUcCCessive Nverse .
SAR images as shown in Figure 22 are computed by assuming that the range ;

and cross range cell sizes are equal and if the moment from the first image
are denoted by Hpq and those from the second by ' and the corresponding

invariants are denoted by P; and p'i, then for the correct value of the ratio r '

p, (r) =p', (r) (4+4)

for all i, Thus, Equation (44) can be used to obtain the correct value of the

cruss range scale factor. To overcome the effects of noise, usually several

invariant moment functions have to be used and an average value of the

resulting values of r is computed as described below in a numerical example.
Apbplication of Equation (44) to successive [SAR imaves as shown

in Figure 22 cives

and

]
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is an absolute algebraic invariant (see Hu [T, i.e., it is invariant under
both rotations and nonuniform scale changes if the determinant of the trans-

formation is unity. Using this result. Equation (46) gives

2 2N\ 4, ( 2 2\ L2 2 2 -
(“oz'“o‘z)r T “11'“11)r *(“zo'“:())‘” (+7)
Substitution from Equation (45) into the term \\ 2
| :
2 2 + . , X
(po, - /,1'0,,> r of equation 43-&8)
g].\'os
( > R bl > > »
: ' ' . 3 - [t b - . [ - ,
Hoo T H oz)(“ 20~ u:o) rer '(“11 M 11) d ’(“-’H H l‘J) v (48) .

As mentioned earlier in the absence of notse, Equations (43) and (45) must
have at least one common positive root.  Usually when nolse is presest, this

is not true and the two roots given by

‘ - 12
. _(’"‘ 20 T K2 ) ‘ (19)

L\ kgs = Wy

(from Equatien (43)) and

L2 2 P2
("’ 207 “:u)

= (30)
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({r 1 tlquation (49)) are not equal or even real, Inthe Husbes comouter
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In combining these roots, only the positive ones are considercd. To give
equal weight to those with r < | as 1o those with r > |, the geometric rather

=

than the algebraic mean was used; i.e.,
T=(r, r,r,) (52)

which is equivalent to averaging of the logarithm of the above roots.

The above method was used to compute the ratio of the ranve to ¢ross
range scale factor of a set of ISAR images obtained from multitrequency
step S-band data for a scaled .nodel of the F-5E, The data were recorded
at the RATSCAT facility where the taruet was placed on a turntable and
slowly rotated at a known rate, Using Equation (40) and the known rotation

rate, the croass range cell size for the images was computed. The ratin ot this

cell size to the radar range resolution cell for the images was equal to 0. 81w, i
Smoothed estimates of the above ratio using successive images of the §
rotating target are given in Table 2. These images were tormed for tar- :;
get aspects ranging from 180 degrees (tail aspect) to 120 degrees. The target
rotation between successive images was 3 degrees, From the results in this
table, the cross range scale factor is estimated to within a 28 percent accu-
racy. This improvement is significant when compared to the previous com-
plete lack of any knowledge of the cross range cell size dimension, The
acenracy to within the cross rancve scale factor s estimated asing this teehi-
nigue will probably be adeqguate to allow the use of moments for the automatie
vlassification of aircraft tarvets, However, no tests were perforn.ed an

Pl osredy to verifv this assamption,
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TABLE 2. COMPUTED RATIO

OF CROSS RANGE TO RANGE

SCALE FACTOR USING PLAN
VIEWS OF THE F-5E.

(Courrect Value is 0.810)




Section IV
RANGE IMAGE CLASSIFICATION USING RANGE
AND CROSS RANGE COLLAPSING

In addition to feature vectors computed from the geometric moments
of the image feature vectors obtained by collapsing the image intensities along
two orthogonal axes are also tested. Using the three second order moments
Hgz» Hag and Hiy the orientation of the target in the image plane is computed
from Equation 39 and the images are rotated so that the same orientatiun
is used for all images. The intensity distribution of the rotated images is
then averaged along the Y and X axes to produce average X-axls and Y-axis
intensity profiles as shown in Figure 23. The correlation functin s uf the
X-axis and the Y-axis intensity profiles are computed and used to construct
a feature vector as shown in Figure 23. The performance of this feature
vector was tested using the radar images generated in Section [I and the

results are nresented in Section VI,
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F gure 23 Computation ot feature vectar using rdnge and cross range £ollapsing
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Section V
CLASSIFIER DESIGN AND OPTIMUM FEATURE SELECTION

The classifier algorithm uses the above measured feature vectors
to classify the target into one of M possible target classes. A review of the
literature on pattern recognition shows that many techniques can be used
to design such classifiers. Among the most common are the nearest neigh-
bor, maximum likelihood, linearized Bayes, and Fisher's linear discrim-
inant technique. The performance of classifiers, designed using the above
techniques, depends on the available learning samples and the particular
classification problem. Since this investigation is primarily concerned
with the analysis of the performance of feature vectors computed using the
method of moments, no elaborate classifier designs are attempted. Instead

two classifiers are used: the Kth nearest neighbor and the Gaussian classifier.

These two classifiers and two schemes used in reducing the dimensionality

of the feature vectors are described in this section.

5.1 Kth NEAREST NEIGHBOR CLASSIFIER

The nearest neighbor classifier decides that a measured feature

vector X belongs to target Tj if

X - X = min X - X (33)
1 . I\
i, k

where:

(1) . . . th

X, a measured [cature vector for target §at the 70 aspect angle
’ and X denotes the norm of X,
e Koo enrest vciznbor ol ossifier, Cla<=iltes the mecsured festure veotor X

Ve e Pt peempeeceents e oo it omong Che Fodearest perghibors, ,-
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A generalization of the Kth nearest neighbor classifier is the distance
weighted Kth nearest neighbor used for many of the classification tests
described in Section VI. To classify a measured feature vector X using

this classifier the K nearest neighbors of X are found from the training set

{Xl, X, 0. XK} and are ordered so that their distances d, = 'x - X, !

from X are increasing

d1< dz< "'<dK'

Using these distances, a set of weights Wj's are computed as follows.

d,. - d.
[ I\ ‘ -
W = ——— d,. #d (54)
j dK -dl K 1
wj =1 iff dp = d - : (55)

W, oo ——d . (5¢)
j K
A
— J
i=1
o the cnaeepbts WA set of class werghits W(m), m o= L, 2, ... M tor tho M

2 ssible targetr classes [C C ... Oy} are computed from
1’ ) \{ !
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M

K
z LA z wim g

=1 m=1

—

the class weights W(m) can be considered as an estimate of p(X/Cm), and

the unknown target is identified as target Chm if

wi™ o e W p (58)

n

where 0 < p < 1 is a threshold used for the decision of unknown; i.e., i

{

max (W n)) p an unknown is declared.

! To reduce the computations required for this classificativn scheme,
a technique developed by Friedman, et al. [9], is used. According to their
algorithm, the set of feature vectors from all the classes are sorted on the
values of one of the coordinates. Then for each test vector, the training
feature vectors are examined in the order of their projected distance from
the test vector on the scrted coordinate. When this projected distance
becomes larger than the distance to the Kth clusest vector of those training

wectors already examined the search stops, the K closest vectors of those

already examined are those for the entire training set.

3

2.2 GAUSSIAN CLASSIFIER

The Gaussian classifier 1s a maximum likelihood classifier nnder the

rssumption that as the target asnect varies the measured feature vectors
N are rand m vectors distributed according to the multi-ariate Gaussian
cdensite. Tader this assumption, the classification aleorithm is reduced

t- the computation of a guadratic discriminant fmction ziven by

DX - {n S, - 55X - X, SN - N IR

o

M i ik




where the ot indicates the 'determinant of ", }?i is an estimate of the
mean value of the feature vector X for the jth target and Sj is an estimate

¢of the covariance matrix of X for the jth target. To ubtain these estimates,
a set of N learning samples of the feature vector X is used to represent each

target over a range of aspect angles. This set of feature vectors is repre-

IR WS

sented by
N i=1,2, ..., N -3
x,
! i=1, 2, ..., K

as o A

where N is the number of aspects and j=1, 2, ..., K indicates the class

or target (Ci') membership., Using this training set, the target means ‘
J [
are computed by x
1
]
N
z _ 1 X (i B
xj_N DX i=1,2, ..., K, (b0)
i=1

N
s, = L N (Xil’-fuxf”-x.l . (1)

Using these estimates of the mean and covariance of the feature vector for
cach rarget, the quadratic discriminants Di(.\i» i= ..., K of Equatiun (3%) '
arc cvaluated fur X equal to the measured feature vector.  The fcature

cector i5 then assigned to target O if
i

D.«Xi 2 DX tor all . l) I/'
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!
To allow for the rejection of an unrecognizable feature vector, two
additional tests are performed before the vector X is assigned to target C..
. b] K
! The first test is based on Hotelling's generalized T statistic, [10] which
\ . .
| is given by
|
|
2 = T -1 =
T = (X -X,)" S7" (X -X) (L3)
] J J
If the dimensivnality of the feature vector X is M and if N training vectors
are used in computing the mean Xj and covariance Si for class Ci then the
statistic
v 2
(.\J - I\/I) T= '
NM
i= distributed according to the central F,o distribution with V- M and v,
o2 -
N-M decrees of freedom (101, [ 11. So for a confidence interval (1 - - B
2 T
Toe D MP _g) (L4)
N -M
M, N-M
For examole, using tabulated values of the F distribution [12], the results arc
that £ the dimensionality of the feature vector 13 12 and 1L 18 training vectors
are uscd then for a 97,5 percent contidence interval, (Fl’ 6(‘)‘ 273) = 3,57
2 15 <12 . .
TT o /3,37 - 1wl
o
U the rrainine set i3 {ncreascd to 27 feature vectors, then for the same
contidence interscal oF 00 o, TR o 2, e
12,12
Y ]
T nd, = H
¢
]
Tt chis te St s qae b b0 receot 4 feature veotor N hal s et sall weithin
Coore ser 0 miisence reslon centered it the class ol se o minant Sinoton
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is maximized by X. The second test is used to safeguard against misclassifi-
cation of feature vectors that have a high probability of belonging to more
than one class and is based on the cost to reject as compared to the loss
incurred for making a substitution error. Assuming that the ocbserved
feature vector X is to be assigned to one of K classes and denoting by a,

for i = 1.,. K the action of choosing class Ci and by ap.pe the action of
rejection, then if ,\(ai/Cj ) is the loss incurred for choosing action a, when

class Cj is present, the Bayes risk is given by

K
R(a./X) = O M\a./C.) p(C./X) . (v3)
1 — o) J
=1
Assuming that all classes are equiprobable and that 4
!
0 1=} i, j=1, ... K
Aa,/C.) = \ iz K+1 (vo)
it 7] r
\g otherwise
and using the Baves rule:
PIX/C) PIC)
piC./X) = = S , ;
J p(X) i
the resultine risk tunctions satisty the relation
Rra, "X \ L ! p(X/C,)
S S A 1 - - (0. 7)
R(al\.“l;’Xx \, T /
AN ;31.‘(,’(‘%) )J

-




From above, the selection of the action that minimizes the Bayes risk is

egquivalent to the selection of class Ci if

p(X/C.l)zp(X/Cj)forj: I, ... K (L8)
and
piX/C) LU
K 1 > 5\ r =q, (09)
s
? p(X/CJ.)

Otherwise, the decision to reject is optimum. Under the assumption that

all classes are equiprobable application of Baves rule uives

p(X/Ci)

,Y p(X/CJ.)

et

=1
and under the Gaussian density assumption
-1

K
plC./X) = N exp [Di(X) - Di(X)] - q, (71)

1

p—

1=

where DXV is given by Equation (39),
In summary the Gaussian classifier used in this study assions a

feature vector X to class Ci £

) DXt 2 D (Xy for all i 172

s,




2 = T .-1 = NM -
2) T —(X-XJ) S_] (X-XJ)_——N_M (g) (73)
M, N-M
and
-1

>q (74)
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where:
DaX) = -+ mls [ -Lix-x)lshix.x (75)
J 2 ] 2 J J j

M = dimensionality of X
N = number of training vectors for class Ci
= confidence interval

T
I;

and q is a threshold on the a posteriori probability p(Cj /X) which can be

expressed as

where N is the loss incurred by the decision to reject and N, 1S the loss

due to a misclassification error.,

.3 FEATURE SELECTION USING A GENERALIZED MAHALANOBIS
DISTAXNUE

Since the processing ot high dimensional feature vectors ts costly
in terms oI computation time and computer memeory requirements, the

Armenstonality

sartc o easure sroper classification. A method 1s describoed here that

roduces the dimensionalite f the feature vector by selecting o subset oof

Seattires attrer ranking the features aceordineg oo their imnortance as 2oeod

L

Class rtlscoriminents. The ceiterion tsed to rank the featiires s based on g

. . . .. r 1 . .
ceneralicqed Mahaltanobis distance L~ given by

' rthe feature ector should be Timited to the minimum neces-

i,
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a> = er (wl B (77)
where:
K
w= S W,
i=1

is the total within-class scatter matrix

o3}
A=

-
1l
—

n.M.I\«Itr
i1

is the between-classes scatter matrix,

M= N x
1 . —
t X C.
1

arc the class means and

T
W, = < (X - M. uX - N
1 pa——; 1 1
X (.
1
arc the within-class scatter matrices.
Substitutizn of the above relations into Fiquation (77) cives

N
i N n, _\1,,T wo! M, (73)
i=1




Equation (78) is used as a measure of the interclass distance. When the
dimensionality of the feature vector X is less than the total number of avail-
able features, the elements of X are selected to maximize the interclass
distance dz. Since the total number of possible combinations of s featurcs

out of m available features is

23
3
[P

which can be very large

(for example (fg) = 1010),

an exhaustive search is not practical. To overcome this difficulty Gonzales
and Moret [8] developed a stepwise search procedure that selects features
scquentially so that at every step the selected feature together with those
already selected vield a maximum of the Mahalanobis distance. This
method will produce the optimal subset when the features are statistically
independent. When the features are correlated, however, the interdependence
»f the elements of the feature vector requires that they all be considered
toaether at everv step. Thus a stepwise procedure may not alwavs yield the
ntimal solution in such cases. To speed this stepwise process, Gonzales
and Moret [3] introduced a recursive procedure for npdating the inverse of
rhe total within-class scatter matrix W as new components are added to the

Seatare cector, Without 2oing through the details of their derivation, the

re=nlt is civen
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U= W2 +p(W

which can be written as

2 > Dy .
L S N
I i N )

d
Above K is the iteration index that should not be confused with the subscript
. tn Fquat.on (78) indicating class membership. To obtamm the overall
)
mcerement in d” (over all classes) ol Equation (78), the tncrement of
Equation (79) must be summed over all the ¢lasses.  Thus in selecting
an additional feature at ecach step, onlv the above increment in d“)' need be

considerced,
5.4 DINMENSIONALITY REDUCTION BY PROJECTING THE FEATURE
VECTOR INTO A LOWER DIMENSIONAL SUBRSPACE
1 muany cases where all compuonents of the teatare vector are aearl-

atile, a2 "Inear transtormation can be nsed to reduce the dimensionalite ot

L

. ) i
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Since for a K class problem a K dimensional feature vector is
adequate for classification, an (M x K) matrix H is introduced to transform
the original M-dimensional feature vector X into a K dimensional feature

vector Y by letting

Y = HLX (80)

D). A TSRV -L<

The matrix H is chosen so that the derived feature vectors Y from the kth

class for k = 1, 2, ... K cluster around the points

t [ol ;

. \

B z
0 C

E‘k = K . T kth element (s1)

1 0

N

Lo

in K dimensional space,

If the training set consists of feature vectors

il ’
N
i i, 2, ..., K
*hen the reguirement that the derived feature voctors B claster arouand i
i ‘

v

the noints £ can be formulated as an optimisation prenlem whore o matrix

Phoos s orzht 20 thiat the oriterion

T

I ol
l- \ (”Txuf.- - B )T (I{TX';I - H)

! Pl

ol




|
/
is minimized. Using the trace and the cyclic properties of the trace
operator, the above can also be written as :
K XN
1= NS e Mo T w oo @ v xM cElE L 2
— i i IS i k™ k
k=1 i=1 J
“
If the elements of H are '

(hij )J_l ‘R 4
i=l.. .M %
b
and the gradient of I with respect to H is defined by j
by
—-
P9 I NN W,
|
‘ -)h11 ‘)th
2 |
VJH = ,
oL . 2
Byt TRk

Tror the optimoun matrs B
vI. - 0.
It

ains the identities {10
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and
v.traTuTB) = Ba® E
H F
then j
K N T K XN .
o NN x| DT E -2 NN xge Ej = 0
k=1 i=1 k=1 i=1 ‘
(53) 3
(|
i
K N
s NN xIN E! i
k=1 i=1
_ 7 r
N N SN \ :
SNt N N b (n4)
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Using this matrix H, the original feature vector X is transformed into the

K dimensional vector Y given by

and both training and classification is performed using this derived feature

vector Y.
L




Section VI
RADAR IMAGE CLASSIFICATION RESULTS

Using the imaging algorithms described in Section II, a set of 540
plane view images was formed from the RATSCAT data base (108 images
per target for 1/3 scaled models of an F-102, an F-15, a YF-16, an F-5E
and an A-10). As mentioned earlier the data were collected at X band
against 1/3 scale models using a total of 256 frequency steps with 3.4 MHz
step size. For the full size targets these measurements correspond to
S-band data with a measurement bandwidth of about 256 MHz. Out of the total
of 108 images per target the first 72 images for each target were obtained
using the lower 128 frequency measurements covering a bandwidth of
128 MHz out of the 256 MHz measurement bandwidth while the last 36 images
per target were obtained using the upper 128 frequency measurements.

The resulting range resolution on the full scale targets is 1.17 meters. For
each image, a 3 degree rotation of the target was used resulting in a cross
range resolution of 0.95 meters on the full scale target. The images were
formed over the following set of aspect angles 0- 3 degrees, 5- 8 degrees...
175-178 degrees and 2 -5 degrees, 7-10 degrees, 12 -15 degrees, ....

177 - 180 degrees for the first set of 128 frequencies and for aspects of

0-3 degrees, 5-8 degrees, ...175-178 degrees for the second set of

128 frequencies., Examples of these images are shown in Figures 24
through 28.

The images of the F-111 were formed by C.C. Chen [14] using data
obtained with the ALCOR radar. The data were recorded from a maneuvering
F-111 target aircraft using a linear FM waveform with 500 MHz instantaneous
bandwidth, The resolution of the images from this target was reduced to
match the resolution of the RATSCAT images. The tmages for this target

were formed over the following aspect angles,
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0 - 3 degrees, 5 - 8 degrees,

85 - 87 degrees and 2 - 5 degrees,
7 - 10 degrees, . ...87 - 90 degrees,

Examples of images from this target arce shown in Figure 29. All of the above
images correspond to top views of the targets i.¢. projections on the horizontal
plane. From the NOSC data set a small number of images (10 top views and
10 side views) was obtained for a DC-10, and examples are shown in Iig-
ure 13, Because this target was moving, it was necessary to use the full
256 Mllz measurement bandwidth to properly focus and align the range
signatures used in forming the image. For classification tests only the ten
side views obtained on this target have been used. These images were
combined with a set of ten side view tmages obtained using RATSCAT nmicasure-
ments tor the F-51 and the A-10.  The side views on these targets, examples
of which are shown in Figures 9 and 10, were obtamned for a 0.2 degree
rotation of the target for nose aspects (-18.2 to -12.0 degrees, -15.2 to
-9 degrees, -12,2 to -0 degrees, -912 to -3 degrees, -0.2 to 0 degrees,
0too.2 devrces, 3.2 to 9.7 degrees, 0.0 to 12,2 degrees, 9.0 to 15.2 degrees,
12,9 to 18.2 degrees) using the tull 250 Mz measurement bandwidth resulting
in U, meter range resolution and 0,5 mieter ¢cross range resolution on the
full scale target.,

In addition to the above classification tests the classifiers were
also presented with top view tmapes of the RATSCAT targets obtained using
the tull 250 MHz bandwidth and a v.2 degree rotation of the target. For
these tests 24 images per target for the five RATSCAT targets were formed
over the following set of aspects (U, 8 - 7 degrees, 6,8 =13 degrees,
30.8 - 37 degrees, 140,8 - 147 degrees, 146.8 - 153 degrees, ... 170.8
-177 degrees) and 3.8 - 10 degrees, 9.8 - 1o degrees, ... 33,8 - 40 degrees,
143.8 - 150 deprees, 149.8 - 156 degrees, ... 173.8 - 180 degrees) and the
classifier was trained on the first set and classified the second.  Fxamples of

these imagpes are shown itn Section 1.
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a, First 20 seconds or 2048 signatures b. Second 20 seconds
(= 2.59 aspect change)

c. Third 20 seconds d. Fourth 20 seconds
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h.1 CLASSIFICATION PERFORMANCE OF FEATURE VECTORS
USING THE CENTRAL MOMENTS

In this section performance results are presented for feature vectors
computed using moments from the image, a combination of moments from
the image and edge detected image and moments from the edge detected
image. tror the classification tests the Kth nearest neighbor classifier and
the Gaussian classifier have been used,

To avoid the problem of singular covariance matrices resulting from
training sets with a small number of learning vectors as compared to their
dimensionality. whenever the training set was small in comparison to the
number of teatures the kth nearest neighbor classifier was used.

For the classification tests in this studv the measurements on the
tarcets ranving from 0 degrees (for nose aspects) to 180 decrees (for tail
aspects) on the plan view images were subdivided into either four

4> deuree sectors {0 -43 deyrees, 45~ 90 devrees. 9) - 135 deurves.

135 - 180 degrees) or three 60 deuree sectors (0 =-60 devrees. 0 =120 devrees.

120 - 180 decrees). In each case the classifiers were trained snd to<ted
on a per sector bhasis.
For classification using the central moments from the imave and from
the edue detected imaue all moments of orders 2 to 7 were computed giving
a total number of 33 central moments., For the classification tests nsing
the Kth nearest neivhbor for the plan “icw ‘mages with 1,17 meter range
and 0,95 meter ¢ross range resolution the classifier was trained using

3n imaves per target obtained using the lower 128 frequency stens over

st TS 0 Ly dearees, o oo S degrees s 00 T o T TN degeee o R
. . ) AR B .. s BN N . . .
Cemsrtier was tesced isamg T2 i ages per araet, nhiere 0 iiee o
. I R v N > e - R e 1
) ‘ HIED I [EEEE SRS DRI )] bl URE QU . -t - ! ! o Larn ] '
R - - -~ ¥
Ly - . Lo -, -1 BEEHE: S e -] Py e -. Vo
RIS . y, PR I TR e RN I:- Cern v steenys a0ty i
RTINS s te U e oo o0 LT T L ETEINN
o , re e NS ETRET: e . -

?

i




the F-111 was: iy Mgpe Bygr Bppr B3gr M3 Beor g M2t Haye Mg

IPWE where the first index corresponds to range and the second to cross
range. The corresponding ranking of the best 12 central moments from the
edge detected image is Hogr Moz Paor M220 Meo’ M310 M300 Psor Mgt Hog
Moo’ Py2° Figures 30 and 31 show the classification performance obtained
using all 33 moments from the image. Figures 32 and 33 show the
classification performance obtained when the best 12 moments from the
image and the best 12 moments from the edge detected image are combined
to form a 24 element feature vector. These figures show the performance
is of the order of 50 to 635 percent. However, when the elements of the
feature vector obtained using the 24 moments (hest 12 from imaue and hest
12 irom edge detected image) are normalized by their standard deviation
over all targets and aspects the kth nearest neighbor classification results

are of the order of 80 to 97 vercent as seen in Figures 34 and 59, bo-

ares 35 throuch 38 show a detailed tabulation of the classuication results
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F.gure 31. Classification results for 33 moments from image intensity {1m resolution plan views 6 classes)
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Figure 33. K-th nearest neighbor classification results ({1m resolution plan views 6 classes) for 24 moments (12
best from image and 12 best from edge detected image} (with unknown) for 45° and 60" sectors.
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F aure 42,
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are shown in Tables 3 and 4, Tables 5 and 6 show classification results
with the Gaussian classifier using three 60 degree sectors for the best 14
moments from the image and for the best nine moments from the image
combined with the best nine from the edge detected image. Tables 7 and ¥
show cladsification results using the best 12 moments from the edge detected
image using the Gaussian classifier with 45 degree sectors. In general, the
best overall performance was obtained using the best 12 moments from the
image although for nose aspects the 12-dimensional feature vector using the
moments from the edge detected image and the feature vector using six
moments from the image and six from the edge detected image did better.
Using 10 profile views of the DC-10, F-5E and A-10 and the best
13 normalized moments from the image, classification tests were performed

with the kth nearest neighbor rule for k =4, The classifier was trained -

using five images per target and was tested with the remaining five per i
tarvet. A perfect score was obtained in this test, and the results are shown {‘

in Ficure 47,
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Figure 47. Kth nearest neighbor classifier using 18
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TABLE 3. CLASSIFICATION RESULTS FOR +45° SECTORS (SECTOR 1 IS
NOSE ASPECTS AND SECTOR 4 IS TAIL ASPECTIS) USING THE BEST 1o
OUT OF 33 MOMENTS COMPUTED FROM THE IMAGE INTENSITIES USING
THE GAUSSIAN CLASSIFIER WITE B = 100 PERCENT AND q = 0.0

FOR SECTOR #1 Q
TARGET: 5 DENTIFIED ASH:
F-102 F-15 F-16 F-GE A-10 F-111 UK
F-1n2 9 0 ol b} 0 0 0
' OF-15 ] 5 1 2 0 0 0
LOF-16 9 0 I 4 0 ] 3
[ F-SE 0 0 0 9 0 0 o
A-19 0 0 0 0! S 1 0
F-111 o) 0 0 0 0 9 3
PROBAEILITY FOR A CORRECT DECISIOY 817 '
FOR SECTOR #2
TARGET: **IDENTIFIED AS**
F-102 F-1g F-16 F-5E A-10 F-111 UK
F-102 6 8 0 0 3 0 0
F-15 0 5 | 2 0 ! 0 7
F-16 0 0 5 3 0 1 0 ;
F-5E o) 0 | 6 | 0 0
A-10 0 0 0 0 9 0 0
F-111 0 0 0 0 9 o} ,
PROBABILITY FOR A CORRECT DECISION 757
FOR SECTOR =3
TARGET: < IDENTIFIED AS#
F-102 F-15 F-16 F-SE A-10 F-111 UK
F-102 9 0 0 0 0 0 0
F-i5 0 9 0 0 0 0 0
F-16 0 9 0 0 0 0 0
F-5E 2 9 7 0 0 0 0
A-10 I 0 0 6 2 2 0
o 0 0 0 0 0 o) 0
S308ABILITY FOR A CORRECT DECISION 36 :
FIR SECTOR =4
TARGET: “ IDENTIFIED a3
F-10z F-15 F-16 F-5E A-10 F-111 LK
.12 5 9 0 0 0 0 0
-3 1 = 0 2 i 0 9
To6 3 a c 0 i 2 i )
£-3t 0) ] g) a 9) b) 3 7
- 65 7 7 ) 5 B ) n !
CEERE J n b b ) 3

TROBABILITY FOR A CORRECT REZISION T2




TABLE 4,

CLASSIFICATION RESULTS FOR 45° SECTORS USING 12

MOMENTS (BEST 6 FROM IMAGE AND BEST 6 FROM EDGE DETECTED
IMAGE) USING THE GAUSSIAN CLASSIFIER WITH B = 99 PERCENT AND

q=0,0
FUIIROSECTOR AR A - ]
TARGET: AKXIDENTIFIED ASkx% :
F-102 F-15 F-16 F-SE A-1 F~111 UK
F-1i02 8 0 0 i} 0 0 1 .
F-1S 0 7 2 0 0 0 0 !
F-16 3 0 6 0 0 0 0 ‘
F-SE i 0 0 g 0 0 0
A-110 ] 0 0 0 9 0 0 i
F~-144 0 0 0 0 0 9 0 ;
PROBABILITY FOR A CORRECT DECISICN 882 |
PERCENT UNKNOWN 21 i
FOR OSECTOR kS .
TARGET: XXIDENTIFIED ASXX
F-td2 F~1S F-16 F-SE A-i F-1114 UK
F~102 9 ) 0 0 0 0 0
| F-15 0 4 4 i 0 0 0
: F-16 2 0 3 i 3 0 0
| F-SE 3 0 0 b 0 0 0
| A-10 1 0 0 0 7 0 i
| F-1114 0 a3 0 0 0 9 )
1 PROBABILITY FOR A CORRECT DECISION 712 ;
2 PERCENT UNKNOWN 2%
‘ QIR OSECT R NS
l TARGET: XXIDENTIFIED ASXX
F~102 F-15 F-16 £-SE A-1 F-114 UK
[ F-102 9 g 0 0 0 0 h)
| F-1S e 4 0 0 0 0 0
! F-156 2 0 S 2 0 0 0
| F-SE 1 0 0 3 0 0 0
; A-10 2 0 g 0 7 0 0
F-111 0 0 0 0 0 a 0
2RCTABILITY FOR A CCRRECT DECISION 241
PERCENT UNKNOWM 0% !
FTOIROSECTOR HEa :
TARGET: XKIDENTIFIED ASXX
! F-102 F-15 F-16 F-5E A-10  F-11 K
J F-102 ? i 0 0 { 0 1
| F-1i5 3 4 2 0 0 n 3
| F-16 2 g 6 1 1 1 q
, F-SE 3 0 0 6 i 7 )
| A-10 1 1 3 i) 9 0 n
? Toqtd b y n ) 9 ) 3

TIOMABILITY AT 8 IORRECT IECIIITN TR

PEXCINT UMHiCUN X
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TABLE 5.

CLASSIFICATION RESULTS FOR 60° SECTORS FOR THE BEST
18 MOMENTS OUT OF 33 (COMPUTED FROM THE IMAGE INTENSITY)
USING THE GAUSSIAN CLASSIFIER WITH B= 99.5 PERCENT AND q= 0.5

FrO)R OSECTOR M4

TARGET: XXKIDENTIFIED ASXxX
F-102 F-15 F-16 F-SE A-10 F-1it UK
F-102 i2 0 0 0 \ 0 0
F-1S i 6 0 2 e 2 i
F-16 2 0 6 2 0 1 1
F-SE i 0 0 io 0 0 i
A-10 0 0 0 0 i2 0 0
F-111 0 0 0 0 0 i2 0
PROBABILITY FOR A CORRECT DECISION 84X
PERCENT UNKNOWN  4X
FOR SGSECTOR 22
TARGET: XXIDENTIFIED ASXX
F-102 F-15 F-16 F~-SE A-10 F-111 UK
F-102 io0 0 0 0 2 0 0
F-15 0 i0 i 0 i 0 0
F-16 k 0 4 0 5 0 i
F-SE ] a ] 5 6 0 1
A-1D 0 0 ¢ 0 10 0 2
F-1114 0 0 0 0 0 0 0
PROBABILITY FOR A CORRECT DECISION 692
PERCENT UNKNOWN 71
FFOR SECTOR T3
TARGET: XXIDENTIFIED ASXX
F-102 F—-15%S F-16 F-SE A-10 F-11%1 UK
F-102 8 q 0 i 0 0 2
F-15 0 8 0 4 1 ] 0
F-16 i 0 ¥4 2 0 0 ¢
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TABLE 6. CLASSIFICATION RESULTS FOR 60° SECTORS FOR THE
BEST 18 MOMENTS (9 FROM IMAGE AND 9 FROM EDGE DETECTED
IMAGE) USING THE GAUSSIAN CLASSIFIER WITH 8= 100 PERCENT AND
q = 0.0 (NO UNKNOWN)

FrOR S OSECTOR 4
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TABLE 7. CLASSIFICATION RESULTS FOR 45° SECTORS USING THE
BEST 12 OUT OF 33 MOMENTS COMPUTED FROM THE EDGE DETECTED
IMAGE USING THE GAUSSIAN CLASSIFIER WITH p = 100 PERCENT AND
Q= 000
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TABLE 8. CLASSIFICATION RESULTS FOR 45° SECTORS USING THE
BEST 12 OUT OF 33 MOMENTS COMPUTED FROM THE EDGE DETECTED
IMAGE USING THE GAUSSIAN CLASSIFIER WITH = 99 PERCENT AND
q=20.0

Oy SIENCT R BRIk R
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6.2 CLASSIFICATION RESULTS USING INVARIANT MOMENT FUNCTIONS

As described in Section III some algebraic relations among the
central moments of an image are invariant with respect to rotations of the
image in the image plane. These relations are known as orthogonal invariant
moment functions and have been proven to be a usefull feature for shape
recognition in photographs and FLIR images. As described in Section III
and Appendix A, 33 orthogonal moment invariants were computed using all
central moments of orders 2 to 7. Orthogonal moment invariants were
computed using both the image and the edge detected image. The invariant
moment functions were ranked in terms of their importance as classification
features using the Mahalanobis distance criterion described in Section 5.
The resulting ordering was the same for both the invariants from the image
and the invariants from the edge detected image. This ordering is:

Pa1:P29+ Pys Par P3s Pyr pse Por Ppr Pgs Pgr Plo» Plgr PL7r P22 P2gr P23
Pro where the invariants p, are defined in Appendix A.

Using a 24-element feature vector obtained by combining the best
12 invariants from the image and the best 12 invariants from the edge
detected image classification tests were performed against the 1 meter
resolution plan view images of the five RATSCAT aircraft models and the
F-111. For these tests the kth nearest neighbor classifier was used. The
results are summarized in Figure 48. The training set for the RATSCAT
targets consisted of 36 images per target formed by using the first set of
128 frequency steps over the following set of aspects 0 to 3 degrees, 5 to
8 degrees, ... 175 to 178 degrees. The testing set consisted of 72 images
per target, where 36 were obtained from the same set of 128 frequency steps
for data collected from aspects 2 to 5 degrees, 7 to 10 degrees, ... 177 to
180 degrees); 36 additional images were obtained from the next 128 frequency
steps (out of the total 256 steps used for data collectiun) for aspects (0 to
3 degrees, 5 to 8 degrees, ...,175 to 178 degrees). The training set for the
F-111 images obtained using the ALCOR radar data consisted of images
formed over the following set of aspects (0 to 3 degrees, 5 to 8 deprees,
...85 to 87 degrees). The testing set for this target consisted uof images

formed over the set of aspects (2 to 5 degrees, 7 to 10 degrees,
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...37 to 90 degrees). Figure 49 summarizes the classification results for
the best |2 invariauats from the image using the kth nearest neighbor rule

and Figure 50 sumimarizes the results obtained using the kth nearest neighbor
with a feature vector made up of the six best invariants from the image and
the six best invariants from the edge detected image. Results obtained using
the Gaussian classifier with the best 12 and best 17 variants from the image
and also with the best six and six invariants (image and edee detected tmave)
and with the best nine and nine are tabulated in Tables 9 through 12, For

the avove classification tests the invariant moment functions were normalisoed

-

v the factor r where r is the radius of cyvration defined in Equation (23)
and the power devends on the order of the invariant and is obtained usinge
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TABLE 9. CLASSIFICATION RESULTS FOR 45° SECTORS FOR THE
BEST 12 INVARIANTS FROM THE IMAGE USING THE GAUSSIAN CLASSIFIER
- WITH P = 99 PERCENT AND gq= 0.7
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TABLE 10,

CLASSIFICATION RESULTS FOR 45° SECTORS FOR THE

BEST 12 INVARIANTS (6 FROM IMAGE AND 6 FROM EDGE DETECTED
IMAGE) USING THE GAUSSIAN CLASSIFIER WITH B = 99 PERCENT AND
q = 0.5
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TABLE 11. CLASSIFICATION RESULTS FOR 60° SECTORS FOR THE "
BEST 17 INVARIANTS FROM THE IMAGE USING THE GAUSSIAN CLASSIFIER
WITH 3= 99 PERCENT, q = 0.0
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TABLE 12. CLASSIFICATION RESULTS FOR THE BEST 18 INVARIANTS
(9 FROM IMAGE AND 9 FROM EDGE DETECTED IMAGE USING THE
GAUSSIAN CLASSIFIER WITH 8 = 99 PERCENT AND q= 0.0
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from the edge detected image. By comparing these results in Figure 51 to
those of Figure 48 obtained for the invariants that were normalized by the
radius of gyration, an average improvement is seen in classification perform-
ance of the order of 30 percent. Using the 33 invariants obtained from the
image without any normalization an optimum transformation matrix H was
computed as described in section 5.4 and the 33 dimensional vector of the
invariants was projected into a 5 dimensional subspace. The resulting
5 dimensional feature vector was used to classifv the five RATSCAT targets
using the Gaussian classifier. The results are given in Table 13. From this
table, classification performance is seen to be 86 percent for nose aspects
and 75 percent for tail aspects, for the 1 meter resolution plan view images.
As seen in the figures and tables tabulating the classification perform-
ance for the invariant moment functions, the best results for the kth nearest
neighbor tests are of the order of 51 percent to 80 percent correct shown in
Figure 51. Comparing these results with those corresponding to classification
using the moments (Figure 34), the central moments give on an average
10 percent better results. The same trend favoring the feature vector from
the moments over that of the invariants is observed by comparing the results
obtained using the feature vector formed by the best 18 invariants from the
image and the corresponding feature vector formed using moments. By
comparing the results in Table 11 with those of Table 5, the performance

is about the same for both features for nose aspects but for all other asnects

the feature vector using the central moments gives 10 to 15 percent better
results, Thus the tests show that the moments perform much better than the !

‘nvarants,

.3 CLASSIFICATION RESULTS USING CENERAL ALCEBRAIC INVARIANT ’
MOMENT FUNCTICNS

In vur discussion .f invariant moment functions a set of relations

o

amony the moments of an imave that are invar:ant with respect to ueneral
Cosrdinate transorimations were presented in Equations 32 through 3%,
Thesce tunctions f the muonents are mvariant with respect to both rotations

and e undorn scale chances of the coorninates thus they are varticulariy

4




suitable for the recognition of inverse SAR images where the cross range
scale may not be known accurately, For the classification tests using these
general algebraic invariants, only the three general invariants obtained by

Hu [7) and repeated in Equations 32 through 35 were used. With these
formulas, three general invariants from the image and three from the edge
detected image were computed and used to form a six-dimensional feature
vector. This feature vector was then used to classify the plan view images
obtained from the RATSCAT targets and the results for the 1 meter resolu-
tion images are presented in Table 14. As seen in this table the performance
of this feature vector is poor (46 to b2 percent correct). The main reason

for this poor performance is probably the low dimensionality of the feature
vector. In an attemipt to improve the performance of the above features
without deriving new formulas to compute higher order general invariants, the
dimensionality of the feature vector was increased from o to 27 by including
the squares and by two products of the components or the original b dimensional
feature vector, Then as described in Section 5.4, a transformation matrix
was obtained to reduce the dimensionality of this new 27 dimensional feature
vector down to 5. The Gaussian classifier was then trained and tested using
this 5 dimensional feature vector and the results are tabulated in Table 15,
The results are still not too good (66 to 71 percent correct), although there

is some improvement over the results of Table 14 for all aspects,

u.+ CLASSIFICATION RESULTS USING RANGE AND CROSS RANGE
COLLAPSING

As described in Section IV, the target orientation in the image nlane

{5 estimated using Equation (39) and the co-ordinate axes are rotated so

that the v-axis (range) lines up with the fuselage. The intensity distribution
of the intave is then averaged along the x and v axes to nroduce average
w-axis and x-axis intensity orofiles. A feature vector i1s then computed using
tihe oorrelation coefficients for each of these two orofiles as shown in Fig-
ure 2:, Using the 1 meter resovlution images. the first 15 correlation

¢ elfivients were culntinuted from the x-axis and the v-axis intensity vroiiles.

s.onzc the Mahalanubis distance criteriun, the correlation coetficients were

100




TABLE 13. CLASSIFICATION RESULTS for 45° SECTORS FOR A
FEATURE VECTOR OBTAINED BY PROJECTING INTO A 5-DIMENSIONAL
SUBSPACE THE 33 ELEMENT INVARIANT FUNCTIONS VECTOR OBTAINED
FRCM THE IMAGE INTENSITY DISTRIBUTION.
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TABLE 14. CLASSIFICATION RESULTS FOR SIX GENERAL ALGEBRAIC
INVARIANTS (3 FROM IMAGE AND 3 FROM 'HE EDGE DETECIED IMAGE)
USING THE GAUSSIAN CLASSIFIER (NO UNKNOWN)
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TABLE 15. CLASSIFICATION RESULTS FOR A FEATURE VECTOR
COMPUTED BY INCLUDING I'HE SQUARES AND BY I'WVO PRODUCTS
OF THE SIN GENERAL INVARIANIS (3 FROM IMAGE AND 3 FROM
EDGE DETFECTED INAGE) AND I'HEN PROTECTING T'HE RESULFING
27 DIMENSIONAL VECTORS ONITO A 5-DIMENSIONAL FEATURE
VECTIOR
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ranked and the resulting ordering for the best 24 was found to be:

R (1), R (2), R (1), R (2), R (3), R (3),
R M), R(5), R (14), R (13), R(7). R (12),
R (4), R (9), R (8), R (15), R _{14), R _(13),

R_(10), R (8), R_(b), R _(12), R_(7), R (9)

X X X

where y ts the co-ordinate along the fuselage and x is the co-ordinate parallel

to the wings. The classification periormance of a feature vector using all
30 correlation coefficients was tested using the kth ncarest neighbor rule
and the results are presented in Figure 52 The classification performance
for the best 24 correlation coefficients and the best 12 was also tested and
the results of the order of 70 to 88 percent correct. These are comparable
to many of the results obtained using the central moments but are about

10 percent below the best performance results obtained using the best 24

moments (best 12 from image and best 12 from edge detected image).

100 —
84.2%
80~ 75.7% 76.1%
65.8%

60—
-
&)
w
T
o 23% 26% 22% 21°%
8 UNKNOWN UNKNOWN UNKNOWN UNKNOWN
: 40—K:” K -7 K =11 K =10

20 -

Q NOSE! TaiLy
45 90 135 180

ASPECT ANGLE, DEGREES

Figure 52. Classification performance using Kth nearest neighbor
for 30 correlation coefficients from collapsed images.
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Figure 53. Classification performance using Kth nearest neighbor

" CORHECT

with best 24 correlation coefficients from collapsed

images.
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Figure 54 Classiticat.on performance using Kth nearest neghbor
with best 12 correlation coetticrents from collapsed

mages.
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Section VII

CONCLUSIONS

Summarizing the results presented in Section VI, it can be observed

that in general the best performance results were obtained using feature

vectors constructed from the moments of the image and the edge detected

itmage. For the plan view images of the six aircraft targets (F-102, YF-lo,

F-15, F-5E, A-10 and F-111, the performance results for a 24-element

feature vector constructed using 12 best moments from the image and 12 best

mornents from the edge detected image are in the range of 84 to 96 percent as

seen in Figure 39 which is repeated here in Figure 55,

Using the dimen-

sionality reduction procedure described in Subsection 5.4, a 5-element featurec

00% 100%
100% r— ™ 96.7% 95.1%
S5.0% 94% 94.3%
90%
84%
80% b— 80% —
60% — 60%—
w%T 40%—
20%9- 20%—
30% 30%
1% 31% 14% 15% 30%
‘ U2NKN UNKN UNKN UNKN UNKN UNKN UNKN
I ik=6) (k=6) {x=6) {K=8) K=11) (K=8) {(K=6)
| | 0 |
a° as° 90° 138 180 a® 60 120 180
ASPECT ANGLE
Figure 55. Kth nearest neighbor classification results (1m resolution plan views 6 classes) for 24 moments (12

best from image and 12 best from edge detected image) normalized by their standard deviations
with provision for unknown.
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vector was constructed by projecting into a 5-dimensional subspace the 33
element moment vector obtained from the image intensity., The classification
performance of this feature vector was tested using the l-meter resolution
plan view images of the five RATSCAT targets and the results are shown in
Table 16. In general as shown in the results in Section VI, the best
classification performance obtained using the invariant functions was about

10 to 15 percent below the best results obtained using the moments, In
general the tests showed that moments from the image did better than moments

from the edge detected image, but feature vectors using combinations between

the two sets had a high classification performance.

The observed classification results with feature vectors obtained by
averaging the image intensity along two ortl ogonal axes (parallel and normal
to the fuselage) and then computing the autucorrelation function was 70 to
88 percent which is 10 percent less than the results obtained using the central
moments. Since the computational requirements for the construction of
this feature vector are considerably smaller than the computational require-
ments for obtaining the geometric moments and invariants, this feature
vector may prove useful in cases where classification accuracies of the
order of 70 to 88 percent are sufficient.

In gencral, the results from the nerformance tests conducted during
this study are encouraging and suggest that the geometric moments may prove
to be important features for the application of statistical pattern recognition
techniques to the identification of aircraft targets from radar imaves, [How-
ever, bhecausze a limited set of imaging geometries (ounly plan views cor-
responding to projections on the horizontal plane for zero roll and profiles
correspondine to projections on the vertical plane) was used in this study the
serformance of the techniques as a function of roll and pitch angles was not

investigated,  Furthermore, (Uwas assumed that the imagine plane was Tnouwn,

-

Seodetermination of the target view presented by the image is an important
Hronlem that nceds to be solved betore the above recoenition technigues can
et a comaletely nnsapervised mode, This problem will be acdeo<s<od

dlory e oy v - area,

-
¥




TABLE lo. CLASSIFICATION RESULTS FOR 45° SECTORS FOR A FEATURE
VECTQOR OBTAINED BY PROJECTING INTO A 5-DIMENSIONAL SUBSPACE
THE 33 ELEMENT MOMENT VECTOR OBTAINED FROM THE IMAGE

INTENSITY DISTRIBUTION,
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APPENDIX A
ORTHOGONAL MOMENT INVARIANTS

by Jon P Belleville i




A.l. INTRODUCTION

One of the more difficult problems in the design of a system to
recognize objects from their images is the selection of a set of approupriate
numerical features to be extracted from the shape of interest for purposes
of classification. Such a set of features that has been successfully applied
to the recognition of optical pictures is a set of invariant moment func -

tions (1], (2], (3], which are discussed in this appendix.

A.2. MOMENTS

The two-dimensional (prq)th order mioments of an intensity distribu-

tion function {(x, v) are defined by

oe] 0
_ < T
= x f(x, y) dxdv , ,q=0,1,2,. ..
npq] [ y o i(x,y) y P q
-0 -

It i assumed that f{x, y) is a piecewise continuous and therefore bounded
function, and that it can have nonzero values only in the finite vart of the

xv plane: then moments of all orders exisr and the following uniqueness
theorem can be proved. Theorem: the double moment sequence {npq} is
uniquely determined by f(x, y); and conversely, [(x,v) is uniquely determined
by ':npq:" [t should be noted that the finiteness assumption is important:
otherwise the theorem might not hold. It can be shown that this theorem
holds in the discrete case as well. In the discrete case the (prgith order

moments of an NxM rectangular image field f(xi, yi) are defined by

NoOoM

n = fix,, v.ix Py 9
) 1 J

Chere g, Vit are the coordinates ot the (1, i1 cell and ((Xi' v 1= the image

tensite fuaction.




The central moments for the same rectangular image field are

defined by

N M p q
m__ = fix,, v.Mx, -X)"(y.-V) {A-1)
Pq iz=1 jzz:l 17y °J
where:

_ Mo
X = —
00

n
and v = n—01
00

V8 -_Pa (A-2)

and are invariant with respect to changes in the image iatensity. In what
follows, by moments we refer to these normalized central moments.

To see that the normalized moments are invariant with respect to
changes in image intensitv let g(x, vy = ¢c-f(x, v1, where ¢ is some non-zero

constant. Then letting the primed moments be those computed from g{x. vi:

N

A
X X

N 1
m~ = !
PA =1 j=1

o(x.,x’.i(x.-)_c)p {(v.-%
i V5% Vi

=

which can be rewritten as;

N N

{
' 2 E ; . - i =.C
m R l(x..\';1(.\;.-.‘0*)\\4"'-\‘l’
ple| 1 1 .

-1 -l




Thus m = ¢ - m_, and from Equation (2-2)
Pq Pq

!

m cm
p.' = —ﬂ __ﬂ = M R
P4 ny, Moo P9

which demonstrates that the normalized noments are invariant with respect
to uniform changes in intensity. Also that the central moments and normal-
ized central moments are invariant with respect to translations, as secen by

examining Equation (A-1).
A.5 ALGEBRAIC FORMS AND INVARIANTS

A 3.1 Definitions

The set of moments developed above are invariant under translations
and image intensity changes. However, since images may have anyv orienta-
tion in the image plane a set of f-atures which remains constant under
rotation of the image is desirable. Such a set has been developed by Hu[l],
and is presented below.

First, some definitions and results will be stated. The following

homogeneous polynomial of two variables u and v,

- D _ P p-1__p p-2 2
L a)ou l) ap-l, lu v (Z) ap—Z,Zu N
. (P Pl P ;
(t : l) al.p—lu a‘)px , {A-%

1% called a binary algebraic torm, or simply a binaryv form. of order p.
Usiag a aotation, intreduced v Caviey, the above form mayv be w ritten (1]

a s

a Y, v
o

Cmeast W e




A homogeneous polvnomial I(a) of the coefficients a

., oa Is an alpe-
- - p
braic invariant of weight w, [1] if

- - w
Ita cee 4, A Y= A7 T (a ves , @ ),
po , op po, op
where a’po e a’o are the new coetficients obtained from substituting
’

the following general linear transformation into the original form (A=3).

wlfe Yl a1 Yy, (A=)

v B § N B §

It w - O, the invariant is called an absolute invariant: if w £ 0 it is called a
relative invariant,
In the studyv of invariants, it is helpful to introduce another pair of

variables x and v, whose transformation with respect to (A=) is as follows:

xT1o o Bx (3-5)

v y Sdby
The transformation (A=5) is referred to as a cogredient transformation, and
(A-4)is referred to as a contragredient transformation. The variables x, v

are referred to as covariant variables, and u,\v as contravariant variables,

Thev satisfyv the following invariant relation

ux - vy T uloxTovw

The Pundamental Theorem of Momenat Invariants obtained by Hu [1) <rated

as= lollows:

If *he algeivraic form of order » has an algedraic ivariant,

Ira’ B R T L SO WA
o’ ) op po op




then the moments of order p have the same invariant but

with the additional factor J ,

_ w
I(“ po’ ‘'t uop)*lJlA I("‘Lpo""'#op)'

where |J| is the absolute value of the Jacobian

of the transformation (A=5).

A. 3. 2 Orthovonal Moment Invariants

In what tollows Hu's [1] derivation of the orthogonal moment
invariant functions is summarized. Two coordinate systems (x, v) and

(x', v1) rotated relative to each other by an angle 8 are used. The two

svstems are related bv the orthogonal matrix transformation ‘
x” cos § sin 6 X
v -sin 6 cos 6 v

w hose Jacobian is

cos 8 sin ©
|71 = = 1
-sin 8 cos 8

Jince |J|=1, the moment invariants are exactly the same as the alpebraic

invariants. If the moments are freated as the coefficients of an algebraic

torm
(R s vee Hu,\"p tA=-b)
po op
unde r the contracredient transtormation,
u cos B8 - sin Qftu
v sin 9 cos v




4 :l_[l
% 21

relations,

0, e, ]
po op

and 7

Iop po’

where [,
po
after the substitutions.
. . p-T.-
the various monotmials \

F'herefore,

In ceneral:

where:

- w

1P s
YU, N\ ‘upo' cee v By

then the moment invariants can be derived by the following algebraic method,

If bothu, v and u' v! are subjected to the transformation:

[\)I —

i [u - [l i u”
'i v \'— l -i Ve

then the orthogonal transformation is converted into the following simple

Substituting (A=7) and (A=8) into (A-6), vields the following identities:

Vu, vIP
)

P

. C e e
(“po""' ;,Lop!(u,\

T L ome 8 I8P
op

Ic; are the corresponding coefficients

r .
on the two sides must be the same,

- . ip=-2)
T b1
-ilp=-2) . -
e ilp-210 I ) o 1p6
1, p-1: op op
- 1 (p-rty
p-r,r per.r
O r < P
N

(A=-7)

(A=3)

{A-9)

From the identity in {7 and \7, the coefficients of

A1




From the identity of the first two expressions in (A-9}, it follows that

1 is the complex conjugate of I ,
p-r,Tr r’ p-r.
A general expression for [ r in terms of the moments mav be

written as follows:

loor,r = Wpoi Bpu2 2700 kpa2r,20) (1,17

(“p~1, 1; Fp-3,3; ~** Hp-2r-1,2r+1)(1, T, |,

(
u D )
Pr.p-2r: Ky o poaps2;, tor FHoplths

where i = A=1 and p-2r >0,

and

. (P/2
.(2

= + pz -~ +
p:2,p/'2 Mpo (") )“p-Z,Z )“p-4,4 R PN

p = even,

It may be noted that these (p+1) I's form a linearly independent set ol Lincar
traasformations of the p's, and vice versa. This can be rewritten in summa-

tion aotation as tollows:

r \ 77
Z:O (l:) Hp-_’l\'-n,lk»n]J (A-11

k

p-2r
I - z -i)" (p'zr)[
p-r,r n |
r=0




Separating into real and complex parts we get

p-2r

r
) n/2 (P2T r
oer, e = 22 |17V ( ) 2 ( )“p-:k-n, 2k+a
n=o0,2,4 n k=0 ‘K
n=even
p-2r r
. . (n-1):2 p-2r r
- (=) Z (-1 ( ) Z( )“p-Zk-n. 2kn
n=1,3,5 n k=0 'K
n=odd

(A=12)

If (2)% 1 and empty sums equal zero then equations (A~11) and (A=12) arc
valid for p-2r 2 0,

Relerring back to equation (A-101 it can be seen that if the I's are

combined in such a manner as to eliminate the 6 dependence, invariants arce

formed with respect to rotation. For example for p=<5and r=2 1 ,,-1,, is
32 723

such an invariant. This can be seen by simply applying equation tA-10),

) . i(5-4)8 i3 -018
O I, - e L,
EREP IR

Furthermore, since the moments are invariant with respect to translation
46 changes in intensity the invariants formed trom the I's also have thesco
Droperties.

A complete svstem ot orthogonal moment invariants developerd by
g L= Listed belos for reference.,

or the second-order moments the two independent invariants are

B oo to

-

vl

B F TN

-
vk
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For the third -order moments the three independent invariants are

IioTosr T21liz o (A-13)

3 3

(I30012 7 Ip3l3y)

A fourth one depending also on the third-order moments is

1 3 3
T Usplia - Ip3lpy

3012 b (A-14)

The first three given by (A=13'are absolute invariants for both proper and
improper rotations but the last one given by (A-14)is invariant only under
proper® rotation, and changes sign under improper¥ rotation. This will be
called a skew invariant, Therefore it is useful for distinguishing "mirror
images.' One more independent absolute invariant may be formed from
second and third order moments as follows:

2 2

I -1 [

Hoolyz ~ oy B!

For pth order moments, p 2 4 we have [p/2] (the integral part of p,2)

invariants

Ipolop: Ip-l,lll,p-1; e Ip_r'rlr’p_r:
If pis even, then

I, , 13 also an invariant.
pi2,prl '

‘A simple rotation of coordinates he @ 15 detined as oa vroper rotation. ohile o
reflection about one ol the coordinate axes tollowed Hhy o rotation 1= detined
a3 MDTroner rotation,




Combining the pth order moments with the (p-2) order moments a set of

|p/2-1] invariants are obtained given by

T %o, p-2 7 11, pe1 Tp-2,0'
Uo-2,20,p-3 T2 pea tpes,p :
(I I + 1 I ) . p-2r >0, r > 1. tA-13)

p-r,r r-1l,p-r-l r,p-r p-tr+1), r-1

Also by combining the pth order moments with second-order moments, two

additional invariants are obtained

if v is odd, and

I

(I})/Z-l, p/2-1 20 - Ip/Zrl,p/l—l !

03) , tA- 10
it pis even,” Therefore there are always (p~1) independent absolute
invariants,

The invariants thus far developed are invariant with respect to trans-
lation. changes in intensity. rotation and retflection. However, thev are not
invariant with respect to scale changes. To adjust for scale chanees cach
invariant is divided by a factor of rk, as donce by Dudanit 21, The scaling

1
. . N 1
Sactar rois detfined as

PVl Hgs !
§
whic s 1itself an invariant (narmelv l] ll also known as the radius of gvration
of the figure, he value of k depends upon the order of the ‘< ased 1o torm

the invariants,

e




The values of k are as foliows:

k = 2p for invariants of the form: I I
p-r,r r,p-r
k = p for invariants of the form: Ip/Z,p/Z
k = ptq-n(r-s) for invariants of the form: I RN
pq rs gp ‘sr .

This completes the development of orthogonal moment invariants,

Hu [1] also developed a set of moment functions which is invariant under
veneral nonsingular algebraic transformations. This set is briefly dis-

cussed in Section 3 of this report.

A, 4+ PROGRAMMING CONSIDERATIONS

Basically, the algorithm to compute the invariants will be a straight

line program; the I's are computed first and then combined to form invariants.

However, there are a couple of points where the program may be optimized,

First, not all the I's need to be computed since Ir . is the complex

. p-
coniugate of I . Second, the calculation of Ip . p 2S per equa-
-r, =L
tion (A=-11) or 1A-12) may be optimized by the use of a recursive
. . m

procedure for computing ( n)'

For instance, if (m) is known for some value of m and n and we wish

m

to compute (nrr:nl) lassume that 0 € n €< m-1), Bv expanding (r:) and (nﬂ)

then

my _ m!

n (m-ni!' n!'

m m!
n-l) tmo-tn-1 (n-1 !

o\ L {(m-n'm' ~ im-n) m
(:1-1) In-1 (m-n''n' tn- 11 n

A-11

b




-

Thus, the recursion relation is

_ {m-n)

(a1) = ooy

Program Verification

(%)

A.d1

A program to compute the orthogonal moment invariants up to order
seven using the results contained in this appendix is presented in a summary
flow chart in Figure B-4 in Appendix B.

To check that the invariants computed are actually invariant with
respect to rotation, a simple figure was used and the invariants calculated.
The

Record | contains the invariants for the

The figure used is shown in Figure A-1. invariants that were
calculated are listed in Table A-1L,
records.

orivginal image and Record 2 are those for the rotated image. The two

Because the test figure is a straight line which is originally

This

are identical.

parallel to the x-axis all moments “pq with q>0 are zero. results 1n

many of the invariants reduciny to the same numerical value and explain-

n Table A-1.

this occurrence

The invariants in Table A-1 are numbered as follows. (The

normalization by ill is not showni
P17 Loy,

p, through pl__ have the forni:
{

1

4
D-n.n N, p-n
where o o4 oo Toand a0, 1, Lo [p/2]. and Tx] indicates the
intecral Dot ot v For the case when o is evea l ., 15 used instead
* e 1)
v b N
L0 SR -
Dolon 2
e rorvan g tavartant=s dvere arbitracily labeled as tollows
.
3 3
P . [ - 1.1
1~ 30 712 03 "2
3 s (
e - /~« Ly s = 4y, ) t
1 \ A 1 N3 2./
\ N
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b. Rotated figure 3
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TABLE A-1. INVARIANTS BEFORE AND AFTER ROTATION

Record 1 Record 2
(Original} (Rotated)
n Py Pn
1 1.00 1,00
2 0.248 0.248
3 0.248 0.248
4 3.37 3.37
5 3.37 3.37
) 1.84 1.84
7 4.09 4,09
8 4,09 4,09
9 4,09 4.09
10 18,1 18.1
11 18.1 18.1
12 18.1 18.1
13 4.25 4,25
14 37.1 7.1
15 371 37.1
16 37.1 37.1
17 37.1 37.1
18 0.123 0.123
19 0.0 2,29 x107%
20 0. 495 0,498
21 3.67 3.07
22 2.01 2,01
23 2.01 2.01
24 13.6 15,0
25 13.6 15,5
26 24,0 24,6
27 24,0 24,0
24 24,0 24,1
20 3007 3007
3N 2,18 S.018
31 ‘ “ 31 5,71
2 J' 4.2 74,2
A-l3

-~ -
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APPENDIX B
DESCRIPTION OF COMPUTER PROGRAMS USED
FOR THE CLASSIFICATION TESTS

by Charles P, Dolan




B.1 INTRODUCTION

In designing the softwarce for this study, an effort was made to
modularize the routines and use a umform input output format for all the
programs. Thus the same training and classification routines could be
emploved for all feature vectors used in the study. Also commonality among
the routines for computing the moments and invariants allowed efficient
program design. The flowcharts and block diagrams in this appendix sum-
marize the computer programs needed for the computation of the moments
‘and invariants, the normalization of the moments by their standard devina-
tion over all targets and aspects, the nearest neighbor and Gaussian classi-

fiers and the feature selection.
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Figure B-1. Flow chart ot program for computation of moments 1
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Figure B-2. Flow chart for computations of moments 2
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